Министерство просвещения Российской Федерации Министерство образования и спорта Республики Карелия Администрация Пряжинского национального муниципального района Муниципальное бюджетное общеобразовательное учреждение "Пряжинская средняя общеобразовательная школа имени героя Советского Союза Марии Мелентьевой "

СОГЛАСОВАНО

Педагогическим советом Протокол № 1 от 30 августа 2022 г.

УТВЕРЖДЕНО
Директор МБОУ «Пряжинская средняя
школа»
О.Н. Санникова
Приказ №402 от 31 августа 2022 г.

РАБОЧАЯ ПРОГРАММА

по предмету «Математика: алгебра и начала математического анализа, геометрия»

для обучающихся 10-11 классов

Пояснительная записка

Программа включает четыре раздела.

- 1. Пояснительная записка, в которой конкретизируются общие цели среднего общего образования по алгебре и началам анализа:
 - характеристика учебного курса;
 - место в учебном плане;
 - личностные, метапредметные и предметные результаты освоения учебного курса;
 - планируемые результаты изучения учебного курса.
- 2. Содержание курса алгебры и начал математического анализа 10—11 классов.
- 3. Примерное тематическое планирование с определением основных видов учебной деятельности обучающихся.
- 4. Рекомендации по организации и оснащению учебного процесса.

Учебный курс построен на основе Федерального государственного образовательного стандарта с учётом Концепции математического образования и ориентирован на требования к результатам образования, содержащимся в Примерной основной образовательной программе основного общего образования. В нём также учитываются доминирующие идеи И положения программы развития и формирования универсальных учебных действий для основного общего образования, которые обеспечивают гражданской формирование российской коммуникативных качеств личности и способствуют формированию ключевой компетенции — умения учиться.

Программа по алгебре и началам математического анализа направлена на реализацию системно-деятельностного подхода к процессу обучения, который обеспечивает:

- построение образовательного процесса с учётом индивидуальных возрастных, психологических, физиологических особенностей и здоровья обучающихся;
- формирование готовности обучающихся к саморазвитию и непрерывному образованию;
- формирование активной учебно-познавательной деятельности обучающихся;
- формирование позитивного отношения к познанию научной картины мира;
- осознанную организацию обучающимися своей деятельности, а также адекватное её оценивание;
- построение развивающей образовательной среды обучения.

Изучение алгебры и начал математического анализа направлено на достижение следующих целей:

- системное и осознанное усвоение курса алгебры и началматематического анализа;
- формирование математического стиля мышления, включающего в себя индукцию и дедукцию, обобщение и конкретизацию, анализ и синтез, классификацию и систематизацию, абстрагирование и аналогию;
- развитие интереса обучающихся к изучению алгебрыи начал математического анализа;
- использование математических моделей для решения прикладных задач, задач из смежных дисциплин;
- приобретение опыта осуществления учебно-исследовательской, проектной и информационно-познавательной деятельности;
- развитие индивидуальности и творческих способностей, направленное на подготовку выпускников к осознанному выбору профессии.

Учебный предмет «Алгебра и начала математического анализа» входит в перечень учебных предметов, обязательных для изучения в средней общеобразовательной школе. Данная программа предусматривает изучение предмета на базовом уровне.

Программа реализует авторские идеи развивающего обучения алгебре и началам математического анализа, которое достигается особенностями изложения теоретического материала и системой упражнений на сравнение, анализ, выделение главного, установление связей, классификацию, обобщение и систематизацию.

Общая характеристика курса

Содержание курса алгебры и начал математического анализа в 10—11 классах представлено в виде следующих содержательных разделов: «Числа и величины», «Выражения», «Уравнения и неравенства», «Функции», «Элементы математического анализа», «Вероятность и статистика. Работа с данными», «Алгебра и начала математического анализа в историческом развитии».

В разделе «**Числа и величины**» расширяется понятие числа, которое служит фундаментом гибкого и мощного аппарата, используемого в решении математических задач и в решении задач смежных дисциплин. Материал данного раздела завершает содержательную линию школьного курса математики «**Числа и величины**».

Особенностью раздела «Выражения» является то, чтоматериал изучается в разных темах курса: «Показательная и логарифмическая функции», «Тригонометрические функции», «Степенная функция». При изучении этого раздела формируется представление о прикладном значении математики, о первоначальных принципах вычислительной математики. В задачи изучения раздела входит развитие умения решать задачи рациональными методами, вносить необходимые коррективы в ходе решения задачи.

Особенностью раздела «**Уравнения и неравенства**» является то, что материал изучается в разных темах курса:

«Показательная и логарифмическая функции», «Тригонометрические функции», «Степенная функция». Материал данного раздела носит прикладной характер и учитывает взаимосвязь системы научных знаний и метода познания — математического моделирования, представляет широкие возможности для развития алгоритмического мышления, обеспечивает опыт продуктивной деятельности для развития мотивации к обучению и интеллекта.

Раздел «Функции» расширяет круг элементарных функций, изученных в курсе алгебры 7—9 классов, а также методов их исследования. Целью изучения данного раздела является формирование умения соотносить реальные зависимости из окружающей жизни ииз смежных дисциплин с элементарными функциями, использовать функциональные представления для решения задач. Соответствующий материал способствует развитию самостоятельности в организации и проведении исследований, воображения и творческих способностейучащихся.

Материал раздела «Элементы математического анализа», включающий в себя темы «Производная и её применение» и «Интеграл и его применение», формирует представления об общих идеях и методах математического анализа. Цель изучения раздела — применение аппарата математического анализа для решения математических и практических задач, а также для доказательства ряда теорем математического анализа и геометрии.

Содержание раздела «Вероятность и статистика. Работа с данными» раскрывает прикладное и практическое значение математики в современном мире. Материал данного раздела способствует формированию умения воспринимать, представлять и критически анализировать информацию, представленную в различных формах, пониманию вероятностного характера реальных зависимостей.

Раздел «Алгебра и начала математического анализа в историческом развитии» позволяет сформировать представление о культурных и исторических факторах становления математики как науки, о ценности математических знаний и их применении в современном мире, о связи научного знания и ценностных установок.

способствует формированию у учащихся личностных, метапредметных и предметных результатов обучения, соответствующих требованиям Фе- дерального государственного образовательного стандарта среднего общего образования.

Личностные результаты:

- 1) воспитание российской гражданской идентичности: патриотизма, уважения к Отечеству, осознание вклада отечественных учёных в развитие мировой науки;
- 2) формирование мировоззрения, соответствующего современному уровню развития науки и общественной практики;
- 3) ответственное отношение к обучению, готовность и способность к саморазвитию и самообразованию на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- 4) осознанный выбор будущей профессиональной деятельности на базе ориентировки в мире профессий и профессиональных предпочтений; отношение к профессиональной деятельности как к возможности участияв решении личных, общественных, государственных и общенациональных проблем; формирование уважительного отношения к труду, развитие опыта участия в социально значимом труде;
- 5) умение контролировать, оценивать и анализировать процесс и результат учебной и математической деятельности;
- 6) умение управлять своей познавательной деятельностью;
- 7) умение взаимодействовать с одноклассниками, детьми младшего возраста и взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности;
- 8) критичность мышления, инициатива, находчивость, активность при решении математических задач.

Метапредметные результаты:

- 1) умение самостоятельно определять цели своей деятельности, ставить и формулировать для себя новые задачи в учёбе;
- 2) умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;
- 3) умение самостоятельно принимать решения, проводить анализ своей деятельности, применять различные методы познания;
- 4) владение навыками познавательной, учебно-исследовательской и проектной деятельности;
- 5) формирование понятийного аппарата, умения создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации;
- 6) умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;
- 7) формирование компетентности в области использования информационно-коммуникационных технологий;
- 8) умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
 - умение самостоятельно осуществлять поиск в различных источниках, отбор, анализ, систематизацию и классификацию информации, необходимой для решения математических проблем, представлять её в понятной форме; принимать решение в

- условиях неполной или избыточной, точной или вероятностной информации; критически оценивать и интерпретировать информацию, получаемую из различных источников;
- 9) умение использовать математические средства наглядности (графики, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
- 10) умение выдвигать гипотезы при решении задачи, понимать необходимость их проверки;
- 11) понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.

Предметные результаты:

- 1) осознание значения математики в повседневной жизни человека;
- 2) представление о математической науке как сфере математической деятельности, об этапах её развития, о её значимости для развития цивилизации;
- 3) умение описывать явления реального мира на математическом языке; представление о математических понятиях и математических моделях как о важнейшем инструментарии, позволяющем описывать и изучать разные процессы и явления;
- 4) представление об основных понятиях, идеях и методах алгебры и математического анализа;
- 5) представление о процессах и явлениях, имеющих вероятностный характер, о статистических закономерностях в реальном мире, об основных понятиях элементарной теории вероятностей; умение находить и оценивать вероятности наступления событий в простейших практических ситуациях и основные характеристики случайных величин;
- 6) владение методами доказательств и алгоритмами решения; умение их применять, проводить доказательные рассуждения в ходе решения задач;
- 7) практически значимые математические умения и навыки, способность их применения к решению математических и нематематических задач, предполагающиеумение:
 - выполнять вычисления с действительными и комплексными числами;
 - решать рациональные, иррациональные, показательные, степенные и тригонометрические уравнения, неравенства, системы уравнений и неравенств;
 - решать текстовые задачи арифметическим способом, с помощью составления и решения уравнений, систем уравнений и неравенств;
 - использовать алгебраический язык для описания предметов окружающего мира и создания соответствующих математических моделей;
 - выполнять тождественные преобразования рациональных, иррациональных, показательных, степенных, тригонометрических выражений;
 - выполнять операции над множествами;
 - исследовать функции с помощью производной истроить их графики;
 - вычислять площади фигур и объёмы тел с помощью определённого интеграла;
 - проводить вычисления статистических характеристик, выполнять приближённые вычисления;
 - решать комбинаторные задачи;
- 8) владение навыками использования компьютерных программ при решении математических задач.

Место курса алгебры и начал математического анализав базисном учебном плане

В базисном учебном (образовательном) плане на изучение алгебры и начал математического анализа в 10—11 классах основной школы отведено 3 учебных часа в неделю в течение каждого года обучения (всего 207 часов). Учебное время может быть увеличено до 4 часов в неделю за счёт вариативной части базисного учебного плана.

Планируемые результаты обучения алгебре и началам математического анализа

Числа и величины

Выпускник научится:

- оперировать понятием «радианная мера угла», выполнять преобразования радианной меры в градусную и градусной меры в радианную;
- оперировать понятием «комплексное число», выполнять арифметические операции с комплексными числами;
- изображать комплексные числа на комплексной плоскости, находить комплексную координату числа.

Выпускник получит возможность:

- использовать различные меры измерения углов при решении геометрических задач, а также задач из смежных дисциплин;
- применять комплексные числа для решения алгебраических уравнений.

Выражения

Выпускник научится:

- оперировать понятиями корня n-й степени, степени с рациональным показателем, степени с действительным показателем, логарифма;
- применять понятия корня n-й степени, степени с рациональным показателем, степени с действительным показателем, логарифма и их свойства в вычисленияхи при решении задач;
- выполнять тождественные преобразования выражений, содержащих корень *n*-й степени, степени с рациональным показателем, степени с действительным показателем, логарифм;
- оперировать понятиями: косинус, синус, тангенс, котангенс угла поворота, арккосинус, арксинус, арктангенс и арккотангенс;
- выполнять тождественные преобразования тригонометрических выражений.

Выпускник получит возможность:

- выполнять многошаговые преобразования выражений, применяя широкий набор способов и приёмов;
- применять тождественные преобразования выражений для решения задач из различных разделов курса.

Уравнения и неравенства

Выпускник научится:

• решать иррациональные, тригонометрические, показательные и логарифмические

уравнения, неравенства иих системы;

- решать алгебраические уравнения на множестве комплексных чисел;
- понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;
- применять графические представления для исследования уравнений.

Выпускник получит возможность:

- овладеть приёмами решения уравнений, неравенств и систем уравнений; применять аппарат уравнений длярешения разнообразных задач из математики, смежных предметов, практики;
- применять графические представления для исследования уравнений, неравенств, систем уравнений, содержащих параметры.

Выпускник научится:

- понимать и использовать функциональные понятия, язык (термины, символические обозначения);
- выполнять построение графиков функций с помощью геометрических преобразований;
- выполнять построение графиков вида y = 0, сте- пенных, тригонометрических, обратных тригонометрических, показательных и логарифмических функций;
- исследовать свойства функций;
- понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.

Выпускник получит возможность:

- проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера;
- использовать функциональные представления и свойства функций для решения задач из различных разделов курса математики.

Элементы математического анализа

Выпускник научится:

- понимать терминологию и символику, связанную с понятиями производной, первообразной и интеграла;
- решать неравенства методом интервалов;
- вычислять производную и первообразную функции;
- использовать производную для исследования и построения графиков функций;
- понимать геометрический смысл производной и определённого интеграла;
- вычислять определённый интеграл.

Выпускник получит возможность:

- сформировать представление о пределе функции в точке;
- сформировать представление о применении геометрического смысла производной и интеграла в курсе математики, в смежных дисциплинах;
- сформировать и углубить знания об интеграле.

Вероятность и статистика. Работа с данными

Выпускник научится:

- решать комбинаторные задачи на нахождение количества объектов или комбинаций;
- применять формулу бинома Ньютона для преобразования выражений;

•

- использовать метод математической индукции для доказательства теорем и решения задач;
- использовать способы представления и анализа статистических данных;
- выполнять операции над событиями и вероятностями.

Выпускник получит возможность:

- научиться специальным приёмам решения комбинаторных задач;
- характеризовать процессы и явления, имеющие вероятностный характер.

Содержание курса

Числа и величины

Радианная мера угла. Связь радианной меры угла с градусной мерой.

Расширение натуральные, целые, понятия числа: рациональные, действительные, комплексные числа. Комплексные числа и их геометрическая интерпретация. Сопряжённые комплексные числа. Действительная и мнимая части, модуль аргумент комплексного числа. Алгебраическая тригонометрическая формы записи комплексных чисел. Арифметические операции с комплексными числами. Натуральная степень комплексного числа. Формула Муавра.

Выражения

Корень n-й степени. Арифметический корень n-й степени. Свойства корня n-й степени. Тождественные преобразования выражений, содержащих корни n-й степени. Вынесение множителя из-под знака корня. Внесение мно- жителя под знак корня.

Степень с рациональным показателем. Свойства степени с рациональным показателем. Тождественные преобразования выражений, содержащих степени с рациональным показателем.

Косинус, синус, тангенс, котангенс угла поворота. Основные соотношения между косинусом, синусом, тангенсом и котангенсом одного и того же аргумента. Формулы сложения. Формулы приведения. Формулы двойного и половинного углов. Формулы суммы и разности синусов (косинусов). Формулы преобразования произведения сумму. Тождественные преобразования выражений, содержащих косинусы, синусы, тангенсы и котангенсы.

Арккосинус, арксинус, арктангенс, арккотангенс. Простейшие свойства арккосинуса, арксинуса, арктангенса, арккотангенса.

Степень с действительным показателем. Свойства степени с действительным показателем. Тождественные преобразования выражений, содержащих степени с действительным показателем.

Логарифм. Свойства логарифмов. Тождественные преобразования выражений, содержащих логарифмы.

Уравнения и неравенства

Область определения уравнения (неравенства). Равносильные уравнения (неравенства). Равносильные преобразования уравнений (неравенств). Уравнениеследствие (неравенство-следствие). Посторонние корни.

Иррациональные уравнения (неравенства). Метод равносильных преобразований

для решения иррациональных уравнений (неравенств). Метод следствий для решения иррациональных уравнений.

Тригонометрические уравнения (неравенства). Основные тригонометрические уравнения (неравенства) и методы их решения. Тригонометрические уравнения, сводящиеся к алгебраическим. Однородные уравнения первой и второй степеней. Решение тригонометрических уравнений методом разложения на множители.

Показательные уравнения (неравенства). Равносильные преобразования показательных уравнений (неравенств). Показательные уравнения (неравенства), сводящиеся к алгебраическим.

Логарифмические уравнения (неравенства). Равносильные преобразования логарифмических уравнений (неравенств). Логарифмические уравнения (неравенства), сводящиеся к алгебраическим.

Решение алгебраических уравнений на множестве комплексных чисел. Основная теорема алгебры.

Функции

Наибольшее и наименьшее значения функции. Чётные и нечётные функции. Свойства графиков чётной и нечётной функций.

Построение графиков функций с помощью геометрических преобразований (параллельных переносов, сжатий, растяжений, симметрий).

Обратимые функции. Связь возрастания и убывания функции с её обратимостью. Взаимно обратные функции. Свойства графиков взаимно обратных функций.

Степенная функция. Степенная функция с натуральным (целым) показателем. Свойства степенной функции с натуральным (целым) показателем. График степеннойфункции с натуральным (целым) показателем.

Функция $y=\sqrt[n]{2}$. Взаимообратность функций у

и степенной функции с натуральным показателем. Свойства функции $y \square$ и её график.

Периодические функции. Период периодической функции. Главный период. Свойства графика периодической функции.

Тригонометрические функции: косинус, синус, тангенс, котангенс. Знаки значений тригонометрических функций. Чётность и нечётность тригонометрических функций. Периодичность тригонометрических функций. Свойства тригонометрических функций. Графики тригонометрических функций.

Обратные тригонометрические функции. Свойства обратных тригонометрических функций и их графики.

Показательная функция. Свойства показательной функции и её график.

Логарифмическая функция. Свойства логарифмической функции и её график.

Элементы математического анализа

Предел функции в точке. Непрерывность. Промежутки знакопостоянства непрерывной функции. Непрерывность рациональной функции. Метод интервалов.

Задачи, приводящие к понятию производной. Производная функции в точке. Таблица производных. Правила вычисления производных. Механический и геометрический смысл производной. Уравнение касательной к графику функции. Признаки возрастания и убывания функции. Точки экстремума функции. Метод нахождения наибольшего и наименьшего значений функции. Построе-ние графиков функций.

Первообразная функция. Общий вид первообразных. Неопределённый интеграл.

Таблица первообразных функций. Правила нахождения первообразной функции. Определённый интеграл. Формула Ньютона — Лейбница. Методы нахождения площади фигур и объёма тел, ограниченных данными линиями и поверхностями.

Вероятность и статистика. Работа с данными

Повторение. Решение задач на табличное и графическое представление данных. Использование свойстви характеристик числовых наборов: средних, наибольшего и наименьшего значений, размаха, дисперсии. Решение задач на определение частоты и вероятности событий. Вычисление вероятностей в опытах с равно- возможными элементарными исходами. Решение задач применением комбинаторики. Решение задач на вычисление вероятностей независимых событий, применение формулы сложения вероятностей. Решение задач с применением диаграмм Эйлера, дерева вероятностей, формулы Бернулли.

Условная вероятность. Правило умножения вероятностей. Формула полной вероятности.

Дискретные случайные величины и распределения. Независимые случайные величины. Распределение суммы и произведения независимых случайных величин.

Математическое ожидание и дисперсия случайной величины. Математическое ожидание и дисперсия суммы случайных величин.

Геометрическое распределение. Биномиальное распре- деление и его свойства.

Непрерывные случайные величины. Понятие о плотности вероятности. Равномерное распределение. Показательное распределение, его параметры. Понятие о нормальном распределении. Параметры нормального распределения. Примеры случайных величин, подчинённых нормальному закону (погрешность измерений, рост чело- века).

Неравенство Чебышёва. Теорема Бернулли. Закон больших чисел.

Выборочный метод измерения вероятностей. Роль закона больших чисел в науке, природе и обществе.

Ковариация двух случайных величин. Понятие о коэффициенте корреляции. Совместные наблюдения двух случайных величин. Выборочный коэффициент корреляции.

Алгебра и начала математического анализа в историческом развитии

Развитие идеи числа, появление комплексных чисел и их применение. История возникновения дифференциального и интегрального исчисления. Полярная система координат. Элементарное представление о законе больших чисел.

Номер	дер Содержание учебного		ичеств Ов	Характеристика основных видов деятельности ученика(на уровне учебных
Н	материала	I	II	действий)
1	2	3	4	5
p	торение и асширение сведений функции	12	14	
1	Наибольшее и наименьшее значения функции. Чётные и нечётные функции	3	3	Формулировать определения наибольшего и наименьшего значений функции, чётной и нечётной функций. Формулировать теоремы о свойствах графиков чётных и нечётных функций. Находить наибольшее и наименьшее значения функции на множестве по её графику.
2	Построение графи- ков функций с помощью геометрических преобразований	1	1	Исследовать функцию, заданную формулой, на чётность. Строить графики функций, используя чётность или нечётность. Выполнять геометрические преобразования графиков функций, связанные с параллельными переносами, растяжениями, сжатиями и симмет-

1	2	3	4	5
3	Обратная функция	2	3	риями, относительно координатных осей. Формулировать определение обратимой функции. Распознавать обратимую функцию по её графику. Устанавливать
4	Равносильные урав-нения и неравенства	2	3	обратимость функции по её возрастанию или убыванию. Формулировать определение взаимно обратных функций. Проверять, являются ли две данные функции взаимно обратными. Находить обратнуюфункцию к данной обратимой функции. По графику данной функции строить график обратной функции. Устанавливать возрастание (убывание) обратной функции по возрастанию (убыванию) данной функции. Формулировать определения области определения уравнений (неравенств), уравнений-следствий (неравенств-следствий), постороннего корня. Формулировать теоремы, описывающие равносильные преобразования уравнений
5	Метод интервалов	3	3	
	Контрольная работа № 1	1	1	

(неравенств).
Применять метод равносильных
преобразований для решения уравнений и
неравенств. Находить
область определения уравнений и
неравенств. При-

				· ·
				менять метод следствий для решения
				уравнений. Решать неравенства методом
				интервалов
	Степенная функция	19	23	
6	Степенная	1	1	Формулировать определение степенной
	функция с			функции сцелым показателем. Описывать
	натуральным			свойства степенной функции с целым
	показателем			показателем, выделяя случаи чётной и
7	Степенная	2	2	нечётной степени, а также натуральной,
	функция с целым			нулевой и целой отрицательной степени.
	показателем			Строить графики функций на основе
8	Определение	2	2	графика степенной функции с целым
	корня			показателем. Находить наибольшее и
	<i>n</i> -й степени.			наименьшее значения степенной функции
	Функ-			с целым показателем на промежутке.
	ция $y \square^n x$			Формулировать определение корня
9	Свойства корня	3	4	(арифметического корня) п-й степени, а
	п-йстепени			также теоремы о его свойствах, выделяя
	Контрольная	1	1	случаи корней чётной и нечётной степени.
	работа № 2			Находить области определения вы-
1	Определение	2	2	ражений, содержащих корни <i>n</i> -й степени.
0	и свойства			Решать уравнения, сводящиеся к
	степенис			уравнению $x^n = a$.
	рациональным			Выполнять тождественные
	показателем			преобразования выражений, содержащих
				корни <i>n</i> -й степени, в частности, выносить
				множитель из-под знака корня
				п-й степени, вносить множитель под знак
				корня

1	2	3	4	5
1 1	Иррациональны е уравнения	3	4	<i>п</i> -й степени, освобождаться от иррациональности в знаменателе дроби. Описывать свойства

1 2	Метод равносильных преобразований для решения иррациональных уравнений	2	3	функции $y \square^n x$, выделяя случаи корней чётной и нечётной степени. Строить графики функций на основе графика функции $y \square^n x$. Φ ормулировать определение степени с рациональным показателем, а также
1 3	Иррациональны е неравенства	2	3	теоремы о её свойствах. Выполнять тождественные преобразования выражений, содержащих степени с рациональным показателем.
	Контрольная работа № 3	1	1	рациональным показателем. Распознавать иррациональные уравнения и неравенства. Формулировать теоремы, обосновывающие равносильность уравнений (неравенств) при возведении обеих частей данного уравнения (неравенства) в натуральную степень. Решать иррациональные уравнения методом равносильных преобразований и методом следствий. Решать иррациональные неравенства методом равносильных преобразований

Т	ригонометрические функции	29	35	
1 4	Радианная мера угла	2	2	Формулировать определение радианной меры угла. Находить радианную меру угла
1 5	Тригонометричес киефункции числового аргумента	2	2	по его градус-ной мере и градусную меру угла по его радианной мере. Вычислять длины дуг окружностей. Формулировать определения косинуса,
1 6	Знаки значений тригонометричес ких функций. Чётность и нечётность тригонометричес ких функций	2	2	синуса, тангенса и котангенса угла поворота. Выяснять знак значений тригонометрических функций. Упрощать тригонометрические выражения, используя свойства чётности тригонометрических функций. Формулировать определения
1 7	Периодические функции	1	1	периодической функции, её главного периода. Упрощать тригонометрические выражения, используя свойства пери-
1 8	Свойства и графикифункций $y = \sin x$ и $y = \cos x$	2	3	одичности тригонометрических функций. Описывать свойства тригонометрических функций. Строить графики функций на основе
1 9	Свойства и графикифункций $y = tg x u y = ctg x$	2	3	графиков четырёх основных тригонометрических функций. Преобразовывать тригонометрические выражения на основе соотношений между

		тригонометрическими функциями одного и того же аргумента.

1	2	3	4	5
	Контрольная работа № 4	1	1	По значениям одной тригонометрической функции находить значения остальных
2 0	Основные соотношения между три-гонометрическим и функциями одного итого же аргумента	3	4	тригонометрических функций того же аргумента. Преобразовывать тригонометрические выражения на основе формул сложения. Опираясь на формулы сложения, доказывать формулы приведения, формулы двойных углов, формулы суммы иразности синусов (косинусов), формулы
2 1	Формуы сложени я	3	3	преобразования произведения тригонометрических функцийв сумму. Преобразовывать тригонометрические
2 2	Формулы приведения	2	2	выражения на основе формул приведения, формул двойных и половинных углов,
2 3	Формулы двойного и половинного углов	4	5	формул суммы и разности синусов (косинусов), формул преобразования произведения тригонометрических функцийв сумму
2 4	Сумма и разность синусов (косинусов)	2	3	

2 5	Формула преобразования произведения тригонометричес ких функций в сумму	2	3	
	Контрольная работа № 5	1	1	
ypa	ригонометрические внения и авенства	16	22	
2 6	Уравнен иесоs <i>x</i> = <i>b</i>	2	3	Формулировать определения арккосинуса, арксинуса, арктангенса, арккотангенса. Находить значения

2 7	Уравнен $uesin x = b$	2	3	обратных тригонометрических функций в отдельных табличных точках. Используя понятия арккосинуса, арксинуса,
2 8	Уравнения $tg x = b$ ис $tg x = b$	1	3	арктангенса, арккотангенса, решать простейшие тригонометрические уравнения.
2 9	Функции $y = \arccos x, y = \arcsin x, y$ $= \arctan x, y$	2	3	Формулировать свойства обратных тригонометрических функций. Строить графики функций на основе графиков четырёх основных обратных тригонометрических функций. Упрощать выражения, содержащие обратные тригонометрические функции.

1	2	3	4	5
3 0	Тригонометричес кие уравнения, сводящиеся к алгебраичским	3	3	Распознавать тригонометрические уравнения и неравенства. Решать тригонометрические уравнения, сводящиеся к алгебраическим
3 1	Решение триго- нометрических уравнений методом разложения на мно-жители Решение	2	3	уравнениям, в частности, решать однородные тригонометрические уравнения первой и второй степени, а также решать тригонометрические уравнения, применяяметод разложения на множители.
2	простейших тригонометричес ких неравенств Контрольная	1	1	Решать простейшие тригонометрические неравенства
	работа № 6			
	Производная и её применение	26	32	
3 3	Представление о пределе функции вточке и о непре-	2	3	Устанавливать существование предела функции в точке и находить его на основе графика функции. Различать графики непрерывных и разрывных функций.

	рывности функции вточко	e			Находить приращение аргумента и приращение функции в точке. Вычислять
3 4	Задачи мгновенной скорости касательной	о И К	1	1	среднюю скорость движения материальной точки по закону её движения. Формулировать определение производной функции в точке, правила вычисления

	графику функ- ции			производных. Находить производные функций, уравнения касательных графика функции, мгновенную скорость движения материальной точки. Использовать ме-
3 5	Понятие производн ой	3	3	ханический и геометрический смысл производнойв задачах механики и геометрии.
3 6	Правила вычисле-ния производной	3	3	Формулировать признаки постоянства, возрастания и убывания функции. Находить промежутки возрастания и
3 7	Уравнение касатель-ной	3	4	убывания функции, заданной формулой. Формулировать определения точки максимума и точки минимума, критической точки, теоремы, связывающие точки экстремума с производной. Находить точки экстремума функции, наибольшееи наименьшее значения функции на промежутке. Исследовать свойства функции с помощью производной и строить график функции
	Контрольная работа № 7	1	1	
3 8	Признаки возрастания и убывания функции	2	3	
3 9	Точки экстремума функции	3	4	

Окончание

1	2	3	4
4	Применение	3	4
0	производной при		
	нахождении		
	наибольшего и		
	наименьшего		
	значений		
	функции		
4	Построение	4	5
1	графиков		
	функций		
	Контрольная	1	1
	работа № 8		
	Повторение и	3	23
	систе-матизация	3	23
	учебного		
	материала		22
4 2	Повторение и	2	22
<i>_</i>	систематизация		
	учебного		
	материала за		
	курс алгебры и		
	начал анализа		

Итоговая	1	1
контрольная		
работа		

11 класс (**I вариант: 3 часа в неделю, всего 102 часа**, II вариант: 4 часа в неделю, всего 140 часов)

Номер	Содержание учебного материала	очас		Характеристика основных видов деятельности ученика (на уровне учебных действий)
1	2	3	1I 4	5
	2 Показательная логарифмическая функции	28	36	3
1	Степень с произвольным действительным показателем. Показатель ная функция	3	4	Формулировать определение показательной функции. Описывать свойства показательной функции, выделяя случай основания, большего единицы, и случай положительного основания, меньшего единицы. Преобразовывать выражения, содержащие степени с
2	Показательные уравнения	3	4	действительным показателем. Строить графики функций на основе графика
3	Показательные неравенства	3	4	показательной функции. Распознавать показательные уравнения и неравенства. Формулировать теоремы о равносильном преобразовании показательных уравнений

1	2	3	4	5
	Контрольная работа № 1	1	1	и неравенств. Решать показательные уравнения инеравенства.
4	Логарифм и егосвойства	4	5	Формулировать определение логарифма положительного числа по положительному
5	Логарифмичес кая функция и её свойства	4	5	основанию, отличному от единицы, теоремы о свойствах логарифма. Преобразовывать выражения, содержащие логарифмы. Формулировать определение
6	Логарифмическ иеуравнения	3	4	логарифмической функции и описывать её свойства, выделяя случай основания,
7	Логарифмическ ие неравенства	3	4	большего единицы, и случай положительного основания, меньшего еди-

8	Производные пока- зательной и лога- рифмической функций	3	4	ницы. Доказывать, что показательная и логарифмическая функции являются взаимно обратными. Строить графики функций на основе логарифмической функции.
	Контрольная работа № 2	1	1	Распознавать логарифмические уравнения и неравенства. Формулировать теоремы о равносильном преобразовании логарифмических уравненийи неравенств. Решать логарифмические уравнения и неравенства. Формулировать определения числа е, натурального логарифма. Находить производные функций,

	Интеграл и его применение	11	13	содержащих показательную функцию, логарифмическую функцию, степенную функцию с действительным показателем
9	Первообразная	2	3	Формулировать определение первообразной функции, теорему об
1 0	Правила нахождения первообразной	3	3	основном свойстве первообразной, правила нахождения первообразной. На основе таблицы первообразных и правил
1 1	Площадь криволинейной трапеции. Определённый интеграл	4	5	нахождения первообразных находить первообразную, общий вид первообразных, неопределённый интеграл. По закону изменения скорости движения
1 2	Вычисление объёмов тел	1	1	материальной точки находить закон движения материальной точки.
	Контрольная работа № 3	1	1	Формулировать теорему о связи первообразнойи площади криволинейной трапеции. Формулировать определение определённого интеграла. Используя формулу Ньютона — Лейбница, находит определённый интеграл, площади фигур, ограниченных данными линиями. Использовать определенный интеграл для нахождения объёмов тел, в частности объёмов тел вращения
1	2	3	4	5

	Элементы комбинаторики. Бином Ньютона	12	16	
1 3	Метод математиче- ской индукции	2	3	Формулировать последовательность действий прииспользовании доказательства методом математической
1 4	Перестановки, размещения	3	4	индукции. Использовать метод математической индукции для доказательства
1 5	Сочетания (комбинации)	3	4	неравенств, нахождения конечных сумм, при решении задач по теории чисел.
1 6	Бином Ньютона	3	4	Формулировать определение перестановки конечного множества. Формулировать определение размещения п-элементного множества по к элементов. Формулировать определение сочетания п-элементного множества по к элементов. Используя формулы: количества перестановокконечного множества, размещений п-элементного множества по к элементови сочетаний п-элементного множества по к элементов, решать задачи комбинаторногохарактера. Записывать формулу бинома Ньютона.
	Контрольная работа № 4	1	1	

				Формулировать свойства треугольника Паскаля ибиномиальных коэффициентов
	Элементы еории ероятностей	13	17	
1 7	Операции над событиями	3	4	Формулировать определения несовместных событий, объединения и
1 8	Зависимые и независимые события	4	5	пересечения событий, дополнения события. Используя формулу вероятности объединения двух несовместных событий,
1 9	Схема Бернулли	2	3	формулу, связывающую вероятности объединения и пересечения двух событий,
2 0	Случайные величины и их характеристики	3	4	формулу вероятности дополнения события, находить вероятности событий. Формулировать определения зависимых и

1/	1	1	независимых событий, условной
Контрольная	1	1	
работа № 5			вероятности. Используятеоремы о
			вероятности пересечения двух зависимых
			и независимых событий, теорему о
			вероятности пересечения нескольких
			независимых событий, находить
			вероятности событий.
			Распознавать вероятностные
			эксперименты, описываемые с помощью
			схемы Бернулли. Находить вероятность
			события, состоящего в том, что всхеме
			Бернулли успехом завершится данное
			количество испытаний.

Окончание

1	2	3	4	5
	Повторение и систематизация учебного	39	58	Формулировать определения случайной величиныи множества её значений. Для случайной величины с конечным множеством значений формулировать определения распределения случайной величины и её математического ожидания. Находить математическое ожидание случайной величины по её распределению. Использовать выводы теориивероятностей в задачах с практическим жизненным содержанием
	материала			
сист уче кур мат	торение и гематизация бного материалаза с алгебры и начал ематического	3 8	57	
	трольная ота № 6	1	1	

Рабочая программа по геометрии. 10—11 классы

Пояснительная записка

Программа включает четыре раздела.

- 1. Пояснительная записка, в которой конкретизируются общие цели среднего (полного) общего образования по геометрии:
 - характеристика учебного курса;

- место в учебном плане;
- личностные, метапредметные и предметные результаты освоения учебного курса;
- планируемые результаты изучения учебного курса.
- 2. Содержание курса геометрии 10—11 классов.
- 3. Примерное тематическое планирование с определением основных видов учебной деятельности обучающихся.
- 4. Рекомендации по организации и оснащению учебного процесса.

Учебный курс построен на основе Федерального государственного образовательного стандарта с учетом Концепции математического образования и ориентирован на требования к результатам образования, содержащимся в Примерной основной образовательной программе основного общего образования. В нём также учитываются доминирующие идеи и положения Программы развитияи формирования универсальных учебных действий для основного общего образования, которые обеспечивают формирование российской гражданской идентичности, коммуникативных качеств личности и способствуют формированию ключевой компетенции — умения учиться.

Программа по геометрии направлена на реализацию системно-деятельностного подхода к процессу обучения, который обеспечивает:

- построение образовательного процесса с учётом индивидуальных возрастных, психологических, физиологических особенностей и здоровья обучающихся;
- формирование готовности обучающихся к саморазвитию и непрерывному образованию;
- формирование активной учебно-познавательной деятельности обучающихся;
- формирование позитивного отношения к познанию научной картины мира;
- осознанную организацию обучающимися своей деятельности, а также адекватное её оценивание;
- построение развивающей образовательной среды обучения. Изучение геометрии направлено на достижение следующих целей:
- системное и осознанное усвоение курса геометрии;
- формирование математического стиля мышления, включающего в себя индукцию и дедукцию, обобщение и конкретизацию, анализ и синтез, классификацию и систематизацию, абстрагирование и аналогию;
- развитие интереса обучающихся к изучению геометрии;
- использование математических моделей для решения прикладных задач, задач из смежных дисциплин;
- приобретение опыта осуществления учебно-исследовательской, проектной и информационно-познавательной деятельности;
- развитие индивидуальности и творческих способностей, направленное на подготовку выпускников к осознанному выбору профессии.

Учебный предмет «Геометрия» входит в перечень учебных предметов, обязательных для изучения в средней (полной) общеобразовательной школе. Данная программа предусматривает изучение предмета на базовомуровне.

Программа реализует авторские идеи развивающего обучения геометрии, которое достигается особенностями изложения теоретического материала и системой упражнений на доказательство, сравнение, построение, анализ, выделение главного, установление связей, классификацию, обобщение и систематизацию.

Общая характеристика курса

Содержание курса геометрии в 10—11 классах представлено в виде следующих содержательных разделов:

«Параллельность в пространстве», «Перпендикулярность в пространстве», «Многогранники», «Координаты и векторы в пространстве», «Тела вращения», «Объёмы тел. Площадь сферы», «Геометрия в историческом раз- витии».

В разделе «Параллельность в пространстве» вводится понятие параллельности прямой и плоскости, которое служит фундаментом гибкого и мощного аппарата, используемого в решении геометрических задач.

В задачи изучения раздела «Перпендикулярность в пространстве» входит развитие умения решать задачи рациональными методами, вносить необходимые коррективы в ходе решения задачи.

Особенностью раздела «Многогранники» является то, что материал данного раздела носит прикладной характер и учитывает взаимосвязь системы научных знаний и метода познания — математического моделирования, обладает широкими возможностями для развития алгоритмического мышления, обеспечивает опыт продуктивной деятельности, обеспечивающий развитие мотивации к обучению и интеллекта.

Раздел «**Координаты и векторы в пространстве**» расширяет понятия, изученные в курсе геометрии 7—9 классов, а также методы исследования. Целью изучения данного раздела является формирование умения применять координатный метод для решения различных геометрических задач.

Материал раздела «**Тела вращения**» способствует развитию самостоятельности в организации и проведении исследований, воображения и творческих способностей учащихся.

Материал раздела «**Объёмы тел. Площадь сферы**» формирует представления об общих идеях и методах математического анализа и геометрии. Цель изучения раздела — применение математического аппарата для решения

математических и практических задач, а также для доказательства ряда теорем.

Раздел «Геометрия в историческом развитии» позволяет сформировать представление о культурных и исторических факторах становления математики как науки, о ценности математических знаний и их применений всовременном мире, о связи научного знания и ценностных установок.

Личностные, метапредметные и предметные результаты освоениясодержания курса геометрии

Изучение геометрии по данной программе способствует формированию у учащихся **личностных**, **метапредметных**, **предметных результатов** обучения, соответствующих требованиям Федерального государственного образовательного стандарта среднего общего образования.

Личностные результаты:

- 1) воспитание российской гражданской идентичности: патриотизма, уважения к Отечеству, осознания вклада отечественных учёных в развитие мировой науки;
- 2) формирование мировоззрения, соответствующего современному уровню развития науки и общественной практики;
- 3) ответственное отношение к обучению, готовность и способность к саморазвитию и самообразованию на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;

осознанный выбор будущей профессиональной деятельности на базе ориентирования в мире профессий и профессиональных предпочтений; отношение к профессиональной деятельности как к возможности участия в решении личных, общественных, государственных и общенациональных проблем; формирование уважительного отношения к труду, развитие опыта участия в социально значимом труде;

- 5) умение контролировать, оценивать и анализировать процесс и результат учебной и математической деятельности;
- 6) умение управлять своей познавательной деятельностью;
- 7) умение взаимодействовать с одноклассниками, детьми младшего возраста и

- взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности;
- 8) критичность мышления, инициатива, находчивость, активность при решении математических задач.

Метапредметные результаты:

- 1) умение самостоятельно определять цели своей деятельности, ставить и формулировать для себя новые задачи в учёбе;
- 2) умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;
- 3) умение самостоятельно принимать решения, проводить анализ своей деятельности, применять различные методы познания;
- 4) владение навыками познавательной, учебно-исследовательской и проектной деятельности;
- 5) формирование понятийного аппарата, умения создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации;
- 6) умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;

Предметные результаты:

- 1) осознание значения математики в повседневной жизни человека;
- 2) представление о математической науке как сфере математической деятельности, об этапах её развития, о её значимости для развития цивилизации;
- 3) умение описывать явления реального мира на математическом языке; представление о математических понятиях и математических моделях как о важнейшем инструментарии, позволяющем описывать и изучать разные процессы и явления;
- 4) представление об основных понятиях, идеях и методах геометрии;
- 5) владение методами доказательств и алгоритмами решения; умение их применять, проводить доказательные рассуждения в ходе решения задач;
- 6) формирование компетентности в области использования информационно-коммуникационных технологий;
- 7) умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
- 8) умение самостоятельно осуществлять поиск в различных источниках, отбор, анализ, систематизацию и классификацию информации, необходимой для решения математических проблем, представлять её в понятнойформе; принимать решение в условиях неполной или из быточной, точной или вероятностной информации; критически оценивать и интерпретировать информацию, получаемую из различных источников;
- 9) умение использовать математические средства наглядности (графики, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
- 10) умение выдвигать гипотезы при решении задачи, понимать необходимость их проверки;
- 11) понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.
- 12) практически значимые математические умения и навыки, способность их применения к решению математических и нематематических задач;
- 13) владение навыками использования компьютерных программ при решении математических задач.

Планируемые результаты обучения геометрии

Выпускник научится:

- оперировать понятиями: точка, прямая, плоскость в пространстве, параллельность и перпендикулярность прямых и плоскостей;
- распознавать основные виды многогранников (призма, пирамида, прямоугольный параллелепипед, куб);
- изображать геометрические фигуры с помощью чертёжных инструментов;
- извлекать информацию о пространственных геометрических фигурах, представленную на чертежах;
- применять теорему Пифагора при вычислении элементов стереометрических фигур;
- находить объёмы и площади поверхностей простейших многогранников с применением формул;
- распознавать тела вращения: конус, цилиндр, сферу ишар;
- вычислять объёмы и площади поверхностей простейших многогранников и тел вращения с помощью формул;
- оперировать понятием «декартовы координаты в пространстве»;
- находить координаты вершин куба и прямоугольного параллелепипеда;
- находить примеры математических открытий и их авторов, в связи с отечественной и всемирной историей;
- понимать роль математики в развитии России.

В повседневной жизни и при изучениидругих предметов:

- соотносить абстрактные геометрические понятия и факты с реальными жизненными объектами и ситуациями;
- использовать свойства пространственных геометрических фигур для решения задач практического содержания;
- соотносить площади поверхностей тел одинаковой формы и различного размера;
- оценивать форму правильного многогранника после спилов, срезов и т. п. (определять количество вершин, рёбер и граней полученных многогранников).

Выпускник получит возможность научиться:

- применять для решения задач геометрические факты, если условия применения заданы в явной форме;
- решать задачи на нахождение геометрических величин по образцам или алгоритмам;
- делать плоские (выносные) чертежи из рисунков объёмных фигур, в том числе рисовать вид сверху, сбоку, строить сечения многогранников;
- извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах;
- применять геометрические факты для решения задач, в том числе предполагающих несколько шагов решения;
- описывать взаимное расположение прямых и плоскостей в пространстве;
- формулировать свойства и признаки фигур;
- доказывать геометрические утверждения;

- задавать плоскость уравнением в декартовой системе координат;
- владеть стандартной классификацией пространственных фигур (пирамиды, призмы, параллелепипеды);
- использовать свойства геометрических фигур для решения задач практического характера и задач из других областей знаний;
- решать простейшие задачи введением векторного базиса.

Место курса геометрии в учебном плане

В базисном учебном (образовательном) плане на изучение геометрии в 10—11 классах средней школы отведено 2 учебных часа в неделю в течение каждого года обучения (всего 138 часов).

Содержание курса

Повторение

Решение задач с применением свойств фигур на плоскости. Задачи на доказательство и построение контрпримеров. Использование в задачах простейших логических правил. Решение задач с использованием теорем о треугольниках, соотношений в прямоугольных треугольниках, фактов, связанных с четырёхугольниками. Решение задач с использованием фактов, связанных с окружностями. Решение задач на измерения на плоскости, вычисление длин и площадей. Решение задач с использованием метода координат.

Филудная втереометрия ажения (прямоугольный параллелепипед, куб, пирамида, призма, конус, цилиндр, сфера). Основные понятия стереометрии и их свойства. Сечения куба и тетраэдра. Точка, прямая и плоскость в пространстве, аксиомы стереометрии и следствия из них. Взаимноерасположение прямых и плоскостей в пространстве. Параллельность прямых и плоскостей в пространстве. Изображение простейших пространственных фигур на плоскости.

Параллельность и перпендикулярность в пространстве

Расстояния между фигурами в пространстве.

Углы в пространстве. Перпендикулярность прямых иплоскостей.

Проекция фигуры на плоскость. Признаки перпендикулярности прямых и плоскостей в пространстве. Теоремао трёх перпендикулярах.

Многогранники

Параллелепипед. Свойства прямоугольного параллелепипеда. Теорема Пифагора в пространстве. Призма и пирамида. Правильная пирамида и правильная призма. Прямая пирамида. Элементы призмы и пирамиды.

Простейшие комбинации многогранников и тел вращения. Вычисление элементов

пространственных фигур (рёбра, диагонали, углы).

Цилиндр, конус, сфера и шар. Основные свойства прямого кругового цилиндра, прямого кругового конуса. Изображение тел вращения на плоскости. Представление об усечённом конусе, сечениях конуса (параллельных основанию и проходящих через вершину), сечениях цилиндра (параллельно и перпендикулярно оси), сечениях шара. Развёртка цилиндра и конуса.

Объёмы тел. Площадь сферы

Понятие об объёме. Объём пирамиды и конуса, призмыи цилиндра. Объём шара.

Подобные тела в пространстве. Соотношения между площадями поверхностей и объёмами подобных тел. Площадь поверхности правильной пирамиды и прямой призмы. Площадь поверхности прямого кругового цилиндра, прямого кругового конуса и шара.

Координаты и векторы

в пространстве

Движения в пространстве: параллельный перенос, центральная симметрия, симметрия относительно плоскости, поворот. Свойства движений. Применение движений при решении задач.

Векторы и координаты в пространстве. Сумма векторов, умножение вектора на число, угол между вектора- ми. Коллинеарные и компланарные векторы. Скалярное произведение векторов. Теорема о разложении вектора по трём некомпланарным векторам. Скалярное произве-дение векторов в координатах. Применение векторов при решении задач на нахождение расстояний, длин, площадей и объёмов. Уравнение плоскости в пространстве. Уравнение сферы в пространстве. Формула для вычисления расстояния между точками в пространстве.

<u>Тематическое планирование</u> 10 класс (2 часа в неделю, всего 70 часов)

Номер	Содержание	Количест	Характеристика основных видов
напагнаф	учебного	вочасов	деятельности ученика(на уровне учебных
Н	материала		действий)

1	2	3	4
	едение в реометрию	9	
1	Основные понятия стереометрии. Акси-омы стереометрии	2	Перечислять основные понятия стереометрии. Описывать основные понятия стереометрии (точка, прямая, плоскость). Описывать возможные способы
2	Следствия из аксиом стереометрии	2	расположения то-чек, прямых и плоскостей в пространстве. Формулировать аксиомы стереометрии.
3	Пространственны е фигуры. Начальные представления о многогранниках	4	Разъяснять и иллюстрировать аксиомы. Формулировать и доказывать теоремы — след-ствия из аксиом. Формулировать способы задания плоскости в пространстве.
	Контрольная работа № 1	1	Перечислять и описывать основные элементы многогранников: рёбра, вершины, грани.

			Описывать виды многогранников (пирамида, тетраэдр, призма, прямоугольный параллелепипед,куб), а также их элементы (основания, боковые грани, рёбра основания, боковые рёбра). Решать задачи на построение сечений многогранников
	Параллельност ь в пространстве	15	
4	Взаимное расположение двух прямых в пространстве	3	Описывать возможные способы расположения в пространстве: двух прямых, прямой и плоскости, двух плоскостей.
5	Параллельность прямой и плоскости	4	Формулировать определения: параллельных прямых, скрещивающихся прямых, параллельных прямой и
6	Параллельность плоскостей	3	плоскости, параллельных плоскостей, преобразование движения, фигуры,
7	Преобразование фигур в пространстве. Параллельное проектирование	4	симметричнойотносительно точки, равных фигур, преобразования подобия. Разъяснять понятия: преобразование фигур, параллельный перенос, параллельное проектирование, параллельная проекция (изображение) фигуры. Формулировать свойства параллельного проектирования.

1	2	3	4
	Контрольная работа № 2	1	Формулировать и доказывать признаки: параллельности двух прямых, параллельности прямой иплоскости, параллельности двух плоскостей. Формулировать и доказывать свойства: параллельных прямых, параллельных плоскостей. Решать задачи на построение сечений многогранников, а также построение изображений фигур
П	ерпендикулярнос ть в пространстве	27	
8	Угол между прямыми в пространстве	2	Формулировать определения: угла между пересекающимися прямыми; угла между скрещивающимися прямыми; прямой, перпендикулярной плоскости; угла между
9	Перпендикулярн ость прямой и плоскости	3	прямой и плоскостью; угла между двумя плоскостями; перпендикулярных плоскостей; точек, симметричных
1 0	Перпендикуля р и наклонная	4	относительно плоскости; фигур, сим- метричных относительно плоскости;
1	Теорема о трёх пер- пендикулярах	4	расстояния от точки до фигуры; расстояния от прямой до параллель-ной ей плоскости; расстояния между параллельными плоскостями; общего перпендикуляра двух скрещивающихся прямых.

	Контрольная работа № 3	1	Описывать понятия: перпендикуляр, наклонная, основание перпендикуляра,
1 2	Угол между прямойи плоскостью	3	основание наклонной, проекция наклонной, ортогональная проекция фигуры, расстояние между скрещивающимися
1 3	Двугранный угол. Угол между двумя плоскостями	4	прямы-ми, зеркальная симметрия, двугранный угол, граньдвугранного угла, ребро двугранного угла, линейный угол двугранного угла.
1 4	Перпендикулярн ые плоскости	3	Формулировать и доказывать признаки: перпендикулярности прямой и плоскости, перпендикулярности двух плоскостей.
1 5	Площадь ортогональной проекции многоугольника	2	перпендикулярности двух плоскостей: Формулировать и доказывать свойства: перпендикулярных прямых; прямых, перпендикулярных плоскости;

Контрольная	1	перпендикулярных плоскостей.
работа № 4		Формулировать и доказывать теоремы: о
		перпендикуляре и наклонной, проведённых
		из одной точки;
		о трёх перпендикулярах; о площади
		ортогональной проекции выпуклого
		многоугольника.
		Решать задачи на доказательство, а
		также вычисление: угла между прямыми,
		угла между прямой и плоскостью, угла
		между плоскостями, расстояния от точки
		до прямой, расстояния от точки до плоско-
		сти, расстояния между скрещивающимися
		прямы- ми, расстояния между
		параллельными плоскостя-

Окончание

1	2	3	4
			ми, площади ортогональной проекции выпуклогомногоугольника
	Многогранники	15	
1 6	Призма	4	Описывать понятия: геометрическое тело, соседние грани многогранника, плоский
1 7	Параллелепипед	3	угол многогранника, двугранный угол многогранника, площадь поверхности
1 8	Пирамида	5	многогранника, диагональное сечение призмы, противолежащие грани
1 9	Усечённая пирамида	2	параллелепипеда, диагональное сечение призмы и пирамиды, усечённая пирамида.
	Контрольная работа № 5	1	Формулировать определения: многогранника, выпуклого многогранника, призмы, прямой призмы, правильной призмы, параллелепипеда, пирамиды, правильного тетраэдра, высоты призмы, высоты пирамиды, высоты усечённой пирамиды, апофемы правильной пирамиды. Формулировать и доказывать теоремы: о площади боковой поверхности прямой призмы, о диагоналях параллелепипеда, о квадрате диагонали

		прямоугольного параллелепипеда, о площади боковой поверхности правильной пирамиды, о площадибоковой поверхности правильной усечённой пирамиды. Решать задачи на доказательство, а также вычисление: элементов призмы и пирамиды, площади полной и боковой поверхности призмы и пирамиды
Повторение и систематизация учебного материала	4	
Повторение и систематизация учебного материалаза курс геометрии 10 класса	3	
Итоговая контрольная работа	1	

11 класс (2 часа в неделю, всего 68 часов)

Номер	Содержание учебного материала	Количест вочасов	Характеристика основных видов деятельности ученика(на уровне учебных действий)
1	2	3	4
Ко	ординаты и векторыв пространстве	16	
1	Декартовы координаты точки в про- странстве	2	Описывать понятия: прямоугольная система координат в пространстве, координаты точки, вектор, сонаправленные и противоположно
2	Векторы в пространстве	2	направленные векторы, параллельный перенос на вектор, сумма векторов,
3	Сложение и вычитание векторов	2	гомотетия с коэффициентом, равным k , угол между векторами. Φ ормулировать определения:
4	Умножение векторана число. Гомотетия	3	коллинеарных векторов, равных векторов, разности векторов, противоположных векторов, произведения вектораи числа, скалярного произведения двух векторов,
5	Скалярное произведение векторов	3	геометрического места точек, биссектора двугранного угла, уравнения фигуры. Доказывать формулы: расстояния между двумя

6	Геометрическое место точек пространства. Уравнение плоскости Контрольная работа № 1	1	точками (с заданными координатами), координат середины отрезка, координат суммы и разности векторов, скалярного произведения двух векторов, для вычисления косинуса угла между двумя ненулевыми векторами. Формулировать и доказывать теоремы: о координатах вектора (при заданных координатах его начала и конца), о коллинеарных векторах, о скалярном произведении двух перпендикулярных векторов, о ГМТ, равноудалённых от концов отрезка, о ГМТ, принадлежащих двугранному углу и равно- удалённых от его граней, об уравнении плоскости, о векторе, перпендикулярном данной плоскости. Применять изученные определения,
	Тела вращения	29	теоремы и формулы к решению задач
	1		
7	Цилиндр	3	Описывать понятия: цилиндр, боковая
8	Комбинации цилиндра и призмы	2	поверхность цилиндра, поворот фигуры вокруг прямой наданный угол, тело вращения, осевое сечение цилиндра,
9	Конус	3	развёртка цилиндра, боковая поверхность конуса, осевое сечение конуса, развёртка конуса, усечённый конус, усечённая пирамида,

1	2	3	4
1	Усечённый конус	2	описанная вокруг усечённого конуса,
0			усеченная пирамида, вписанная в
1	Комбинации	3	усечённый конус, фигуракасается
1	конуса и		сферы.
	пирамиды		Формулировать определения: призмы,
	Контрольная	1	вписанной в цилиндр; призмы, описанной
	работа № 2		около цилиндра; пирамиды, вписанной в
1	Сфера и шар.	2	конус; пирамиды, описанной около конуса;
2	Уравнение		сферы и шара, а также их элементов;
	сферы		касательной плоскости к сфере;
1	Взаимное распо-		многогранника, вписанного в сферу;
3	ложение сферы	3	многогранника, описанного около сферы;
	иплоскости		цилиндра, вписанного в сферу; конуса,
1	Многогранники,	2	вписанного в сферу; усечённого конуса,
4	вписанные в	3	вписанного в сферу; цилиндра, описанного
	сферу		около сферы, конуса, описанного около

1 5	Многогранни ки, описанные околосферы	3	сферы; усечённого конуса, описанного около сферы. Доказывать формулы: площади полной
1 6	Комбинации цилиндра и сферы, конуса и сферы	3	поверхности цилиндра, площади боковой поверхности конуса, площади боковой поверхности усечённогоконуса. Формулировать и доказывать теоремы: об уравнении сферы данного радиуса с центром в данной точке, о касательной плоскости к сфере и её следствие.

	Контрольная	1	Применять изученные определения,
работа № 3 Объёмы тел. Площадь сферы		17	теоремыи формулы к решению задач
1 7	Объём тела. Формулы для вычисления объёма призмы	3	Формулировать определения: объёма тела, площадиповерхности шара. Доказывать формулы: объёма призмы, объёма пирамиды, объёма усечённой пирамиды, объёма конуса, объёма усечённого конуса, объёма цилиндра, объёмашара, площади сферы. Применять изученные определения, теоремыи формулы к решению задач
1 8	Формулы для вычисления объёмов пирамиды и усечённой пирамиды	5	
	Контрольная работа № 4	1	
1 9	Объёмы тел вращения	5	
2 0	Площадь сферы	2	
	Контрольная работа № 5	1	
Повторение и систематизация учебного материала закурс геометрии		6	

УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ОБЯЗАТЕЛЬНЫЕ УЧЕБНЫЕ МАТЕРИАЛЫ ДЛЯ УЧЕНИКА

- Математика. Алгебра и начала математического анализа, 10 класс/ Мерзляк А.Г.,
 Номировский Д.А., Полонский В.Б., Якир М.С.; под редакцией Подольского В.Е.,
 Общество с ограниченной ответственностью Издательский центр «ВЕНТАНА-ГРАФ»; Акционерное общество «Издательство «Просвещение»
- Математика. Алгебра и начала математического анализа, 11 класс/ Мерзляк А.Г.,
 Номировский Д.А., Полонский В.Б., Якир М.С.; под редакцией Подольского В.Е.,
 Общество с ограниченной ответственностью Издательский центр «ВЕНТАНА-ГРАФ»; Акционерное общество «Издательство «Просвещение»
- Математика. Геометрия, 10 класс/ Мерзляк А.Г., Номировский Д.А., Полонский В.Б., Якир М.С.; под редакцией Подольского В.Е., Общество с ограниченной ответственностью Издательский центр «ВЕНТАНА-ГРАФ»; Акционерное общество «Издательство «Просвещение»
- Математика. Геометрия, 11 класс/ Мерзляк А.Г., Номировский Д.А., Полонский В.Б., Якир М.С.; под редакцией Подольского В.Е., Общество с ограниченной ответственностью Издательский центр «ВЕНТАНА-ГРАФ»; Акционерное общество «Издательство «Просвещение»